

Schritt 1: Erstellen Sie ein Modell in Dlubal RFEM – in gewohnter Art und Weise. Erstellen Sie eine (oder bearbeiten Sie eine vorhandene) Fläche und gehen Sie auf "Fläche bearbeiten", wählen Sie unter Steifigkeit "Orthotrop" und klicken Sie anschließend auf "Parameter bearbeiten"

äche b	earbeiten				>
Basis	Exzentrizität / Bettung FE-	Netz Gelenke Integriert	Achsen Ras	ster	
Fläche	Nr.		Flächenty	p	
1			<u>G</u> eometrie	Ebene	~
Begrer	nzungslinien Nr.		<u>S</u> teifigkeit	Orthotrop	<u> </u>
58-61	-	Š	Flächendi	cke 'Orthotrop'	
Begrer 3,53; 2 <u>M</u> ateria 20	2,53; 1,2; 1,3 al 0 KLH 5s 140 Orthotrop elas	tisch 2D			-
Dicke				414141	2003
E <u> Dic</u>	nstant ked: 140.0 V 🗧	[mm]	9		20
◯ <u>V</u> er	änderlich				JAN .
Komme	entar			4- <i>2</i> -2	and
		~ 5	à		
2	¥ 🔤 🔹 🚯	V	à	Г	OK Abbrech

Anmerkung: Wenn Sie mit den Werten der Steifigkeitsmatrix zur Beschreibung der Eigenschaften einer Fläche arbeiten, ist es unerheblich welche Eigenschaften sie in der Auswahl "Material" eingeben.

Schritt 2: Wählen Sie den Orthotropie-Typ: "Definiert mittels Steifigkeitsmatrix" im Reiter "Allgemein"

Flächensteifigkeit bearbeiten - Orthotrop		×
Allgemein Definiert mittels Steifigkeitsmatrix Steifigkeitsmatrix	Transformierte Steifigkeitsmatrix	
Fläche Nr.	Steifigkeitsmultiplizierungsbeiwerte Für alle Steifigkeitselemente k : 1.00 I.	
Definiert mittels Steifigkeitsmatrix Kopplung Rippendecke Kassettendecke Trapezblech Hohlkörperdecke mit runden Hohlräumen Irägerrost Hohlkörperdecke mit rechteckigen Hohlräumen	Für Biegung- und Torsionsteifigkeitselemente kb: $1.00 \Leftrightarrow i$ Für Torsionssteifigkeitselemente k33: $1.00 \Leftrightarrow i$ Für Schubsteifigkeitselemente ks: $1.00 \Leftrightarrow i$ [-] K44: $1.00 \Leftrightarrow i$ k55: $1.00 \Leftrightarrow i$	$D = \begin{bmatrix} D_{11} & D_{12} \\ D_{22} \end{bmatrix}$
Orthotropierichtung Drehung um z-Achse des lokalen KS der Fläche β : 0.00 🚖 [°] Kommentar	Für Membransteifigkeitselemente km : 	sym. ·.]
		OK Abbrechen

Schritt 3: Klicken Sie auf "Elemente von Excel Importieren" im Reiter "Steifigkeitsmatrix"

Flächensteifigkeit bearbeiten - Orthotrop		\times
Allgemein Definiert mittels Steifigkeitsmatrix Steifigkeitsmatrix Transformierte Steifigkeitsmatrix		
Steifigkeitsmatrix-Elemente (Biegung und Torsion)		-
D11: 2540.000 ♠ kNm] D12: 0.000 € kNm] D13: 0.000 € kNm] D22: 208.000 € kNm] D23: 0.000 € kNm]		
D33: 92.800 € [k Nm]	$\begin{bmatrix} D_{11} & D_{12} & D_{13} & 0 & 0 & D_{16} & D_{17} & D_{18} \end{bmatrix}$	
	$D_{22} D_{23} 0 0$ sym. $D_{27} D_{28}$	
Steifigkeitsmatrix-Elemente (Schub)	D_{33} 0 0 sym. sym. D_{38}	
D44: 12700.000 (kN/m] D45: 0.000 (kN/m] D55: 4420.000 (kN/m]	$egin{array}{cccc} D_{44} & D_{45} & 0 & 0 & 0 \ D_{55} & 0 & 0 & 0 \end{array}$	
	sym. $D_{66} D_{67} D_{68}$	
	D_{77} D_{78}	
Steifigkeitsmatrix-Elemente (Membran)	D ₈₈	
	$D_{11} \dots D_{33}$ [Nm]	
Steifigkeitsmatrix-Ele te (Exzentrizitätseinwirkungen)	$D_{44} \dots D_{88} [\text{N/m}]$	
	$D_{16} \dots D_{38} [{ m Nm/m}]$	
Elemente von Excel oder OpenOffice.org Calc importieren	OK Abbrech	en

Schritt 4: Öffnen Sie das Excel-File: KLH Stiffness Properties_RFEM-Import und wählen Sie die Einheiten aus, wie Sie die Steifigkeitswerte importieren wollen.

⊟	•െ ∂-	≡ ₹		KLH Sti	iffness Pro	perties_F	RFEM-Import.	xlsx - E	xcel		囨			×
File	Home	Insert Page Layo	ut Formulas	Data	Review	View	Developer	Help	Team	WALLNER, MILD	Q	Tell me	Я s	hare
F19		~		f _x	KLH	5s 140 T	TL (DL)							*
Stiffness	s Matrix Elem	ents (Bending and Tors	ion)											
D ₁₁		2.540,000	kNm					IMP	ORT F	ILE				
D ₁₂		0,000	kNm					Stiffn	ess Prop	erties for the mod	elling	of KLH-Ele	ments a	as
D ₁₃		0,000	kNm					ortho	tropic s	hear-flexible plate	using	; Dlubal RFE	M	
D ₂₂		208,000	kNm					in acc	cordance	210				
D ₂₃		0,000	kNm							d oci	<u>م</u> ،	nor	~	
D ₃₃		92,800	kNm							uc SI	gı	ICI	/ 2.0.3	
0.100														
Stiffness	s Matrix Elem	ents (Shear)	1.81/							//=blue 2/us =blue s	LAL/m	->		
D ₄₄		12.700,000	kN/m		_		-<			(KNIII-/III = KNIII;	KIN/II	1)		
D ₄₅		4 420 000	kN/m					200	JS-UNIT:	5 (IDT-IN.*/TC; IDT/TC)				
055		4.420,000	KNYIII											
Stiffness	s Matrix Elem	ents (Membrane)						orier	ntation	of the top layer				
D ₆₆		1.200.000,000	kN/m											
D ₆₇		0,000	kN/m							IL (DL)				
D ₆₈		0,000	kN/m											
D ₇₇		480.000,000	kN/m					KLH F	Panel				_	
D ₇₈		0,000	kN/m							J 5c 140 T	ı /r	ער	-	
D ₈₈		47.200,000	kN/m						NLF	1 35 140 1	- (1	,,		
Stiffness	s Matrix Elem	ents (Eccentric Effects)	1											
D ₁₆		0,000	kNm/m											
D ₁₇		0,000	kNm/m											
D ₁₈		0,000	kNm/m											
D ₂₇		0,000	kNm/m											
D ₂₈		0,000	kNm/m											
D ₃₈		0,000	kNm/m											_
-	- F	KLHdesigner Stiff	ness Prop.	+)							:	•	•
Ready	•								B				+	115%

Anmerkung: Stellen Sie bitte sicher, dass Sie in RFEM selbige Einheiten benutzen, wie auch die Steifigkeitswerte in Excel zur Verfügung gestellt werden. Sie können die Einheiten in RFEM unter dem Menüpunkt "Optionen" und "Einheiten und Dezimalstellen" einstellen.

H	5 -∂-	≡ =				KLH Sti	ffness Pro	perties_f	RFEM-Import.	xlsx - E	xcel		Ŧ			×
File	Home	Insert	Page Layou	ıt f	ormulas	Data	Review	View	Developer	Help	Team	WALLNER, MILD	Q	Tell me	R	Share
F15			-	:	×	f _x	TL (C	DL)								~
Stiffnes	s Matrix Elem	ents (Bend	ding and Tors	ion)												
D ₁₁			2.540,000	kNm						IMP	ORT F	ILE				
D ₁₂			0,000	kNm						Stiffn	ess Prop	erties for the mo	delling	g of KLH-Ele	ment	s as
D ₁₃			0,000	kNm						in acc	cordance	near-flexible plate e to	e using	g Diubai RH	LINI	
D ₂₂			208,000	kNm												
D ₂₃			0,000	kNm						P		h esi	σ	ner	m	
D ₃₃			92,800	kNm								uc3	5		V 2.0.	
Stiffness	s Matrix Elem	ents (Shea	ar)													
D44			12.700,000	kN/r	n					۰ و	SI-UNITS	6 (kNm²/m = kNm	; kN/r	n)		
D45			0,000	kN/r	n					0	JS-UNIT:	S (lbf-in.²/ft; lbf/ft	:)			
D ₅₅			4.420,000	kN/r	n								-			
Stiffness	s Matrix Elem	ents (Men	nbrane)							orier	ntation	of the top layer			_	
D ₆₆		1.	.200.000,000	kN/r	n										-	
D ₆₇			0,000	kN/r	n				TT (DO	Q) L)						
D ₆₈			0,000	kN/r	n					-/						
D ₇₇			480.000,000	kN/r	n					KLH I	Panel					
D ₇₈			0,000	kN/r	n						КГР	4 5c 1/Ω T	ъ <i>(</i> і	עור		
D ₈₈			47.200,000	kN/r	n							1 33 140 1	- (1	,		
Stiffness	s Matrix Flem	ents (Ecce	ntric Effects)													
D16			0.000	kNm	/m											
D ₁₇			0,000	kNm	/m											
D ₁₈			0,000	kNm	/m											
D ₂₇			0,000	kNm	/m											
D ₂₈			0,000	kNm	/m											
D ₃₈			0,000	kNm	/m											
	•	KLHdes	igner Stiff	ness	Prop.	(+)								4	• •
Ready	•										E			-	+	115%

Schritt 5: Wählen Sie das gewünschte KLH-Element zum Import aus

	ნ- ∂-	≡ ∓		KLH Sti	iffness Prop	perties_F	RFEM-Import	.xlsx - E	xcel		Ā	-		×
File	Home	Insert Page Layo	ut Formulas	Data	Review	View	Developer	Help	Team	WALLNER, MILD	Q Q	Tell me	∕Q ₊ sh	are
F19		Ŧ	: × •	f _x	KLH :	5s 140 T	ſL (DL)							۷
Stiffness N	Aatrix Eleme	ents (Bending and Tor	sion)											
D ₁₁		2.540,000	kNm					IMP	ORT F	ILE				
D ₁₂		0,000	kNm					Stiffn	ess Prop	erties for the mo	odelling	of KLH-Ele	ments a	5
D ₁₃		0,000	0 kNm					in acc	cordance	near-flexible plat e to	e using	Diubai KH		
D ₂₂		208,000	kNm											
D ₂₃		0,000	0 kNm							- n es	iσι	ner	m	
D ₃₃		92,800	kNm							u c3	181	ICI	2.0.	
Stiffness N	Aatrix Eleme	ents (Shear)												
D ₄₄		12.700,000	kN/m					• e	SI-UNITS	G (kNm²/m = kNn	n; kN/m	1)		
D ₄₅		0,000	0 kN/m					0	JS-UNIT:	S (lbf-in.²/ft; lbf/i	t)			
D ₅₅		4.420,000	kN/m											
Stiffness N	Aatrix Eleme	ents (Membrane)						orier	ntation	of the top laye	-			
D ₆₆		1.200.000,000	kN/m							וח) וד	<u>۱</u>			
D ₆₇		0,000	kN/m								<u> </u>			
D ₆₈		0,000	kN/m											
D ₇₇		480.000,000	kN/m					KLH I	Panel				_	
D ₇₈		0,000	kN/m							1 5 1 1 0 1	CI / F		-	
D ₈₈		47.200,000) kN/m				KLH S	5s 140 TL	. (DL)				~	
							KLH S	5s 160 TL	. (DL) . (DL)					
Stiffness N	Aatrix Eleme	ents (Eccentric Effects)				KLH S	5ss 160 T	L (DL)					
D ₁₆		0,000	kNm/m				KLH S	5s 170 TL 5s 180 TL	. (DL) . (DL)					
D ₁₇		0,000	kNm/m				KLH S	5s 190 TL	. (DL)				\sim	
D ₁₈		0,000	kNm/m				NLT .	JS 200 TL	. (01)					
D ₂₇		0,000	kNm/m											
D ₂₈		0,000	kNm/m											
D ₃₈		0,000	kNm/m											
			[
4	Þ	KLHdesigner Stiff	fness Prop.	(+						_			•	Þ
Ready									E				-+ 1	15%

Tabelle importieren			×							
Aktion	Applikation	Einstellungen Tabelle								
 Tabelle <u>exportieren</u> Tabelle <u>importieren</u> 	Microsoft Excel	Tabelle hat Kopfzeile								
Einstellungen										
✓ Tabelle importieren vor ✓ Tabelle importieren vor	Tabelle importieren von der aktiven Arbeitsmappe Tabelle importieren vom aktiven Arbeitsblatt									
Formeln und Parameter										
Fo <u>r</u> meln in Tabelle										
D		OK Abbrec	hen							

Schritt 6: Aktivieren Sie die folgenden "Einstellungen" für den Import in RFEM

Schritt 7: Importieren Sie die Steifigkeitsmatrix der KLH-Platte mit Klick auf "OK"